Initialization of nonlinear state-space models applied to the Wiener–Hammerstein benchmark

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the Silverbox Benchmark Using Nonlinear State-Space Models

This work presents the application of an initialization scheme for nonlinear statespace models on a real data benchmark example: the Silverbox problem. The goal of the proposed approach is to transform the identification of a nonlinear dynamic system into an approximate static problem, so that system dynamics and nonlinear terms are identified separately. Classic identification techniques are u...

متن کامل

System identification of nonlinear state-space models

This paper is concerned with the parameter estimation of a general class of nonlinear dynamic systems in state-space form. More specifically, a Maximum Likelihood (ML) framework is employed and an Expectation Maximisation (EM) algorithm is derived to compute these ML estimates. The Expectation (E) step involves solving a nonlinear state estimation problem, where the smoothed estimates of the st...

متن کامل

Hysteresis Identification using Nonlinear State-Space Models

Most studies tackling hysteresis identification in the technical literature follow white-box approaches, i.e. they rely on the assumption that measured data obey a specific hysteretic model. Such an assumption may be a hard requirement to handle in real applications, since hysteresis is a highly individualistic nonlinear behaviour. The present paper adopts a black-box approach based on nonlinea...

متن کامل

Bayesian Learning in Nonlinear State-Space Models

We describe Bayesian learning in nonlinear state-space models (NSSMs). NSSMs are a general method for the probabilistic modelling of sequences and time-series. They take the form of iterated maps on continuous state-spaces, and can have either discrete or continuous valued output functions. They are generalizations of the more well known state-space models such as Hidden Markov models (HMMs), a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Control Engineering Practice

سال: 2012

ISSN: 0967-0661

DOI: 10.1016/j.conengprac.2012.07.004